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The errors in open shell Hartree-Fock calculations are discussed. Various hamiltonians for single 
eigenvalue methods are considered, and it is shown that a better energy is obtained with those 
hamiltonians that correctly account for the open shell/closed shell interactions. 

Die Fehler des Hartree-Fock-Verfahrens bei offenen Sehalen werden diskutiert, indem ver- 
schiedene Hamilton-Operatoren f'tir das Gesamtsystem betrachtet werden. Dabei zeigt sich, dab 
diejenigen Hamilton-Operatoren, die die Wechselwirkung zwischen offenen und abgeschlossenen 
Schalen am besten wiedergeben, auch die besten Energien liefern. 

Discussion des erreurs dans les calculs Hartree-Fock ~ couche ouverte. On consid6re divers 
hamiltoniens pour les m6thodes ~ valeur propre unique, et l'on montre qu'une meilleure 6nergie est 
obtenue avec les hamiltoniens qui rendent eompte correctement de l'interaction couche ouverte- 
couche ferm6e. 

1. Introduction 

Although the Har t ree -Fock  equat ions for a closed shell a tom or molecule 
may  be solved fairly easily in principle, it is not  so for open shell systems. This 
is due to the problem of the off-diagonal multipliers, which cannot  be eliminated. 
M a n y  authors  have considered this [1, 2], and have developed methods  which 
involve two coupled eigenvalue equations, one for the open and one  for the 
closed shells. This approach  has been successfully applied to many  systems, but  
there are certain difficulties, namely lengthy comput ing  time, and problems 
related to which sets of  orbitals should be chosen for configurat ion interaction 
calculations. 

An alternative method  has been proposed  by R o o t h a a n  El], and also by 
Nesbet  [3], which simplifies the Har t ree -Fock  equat ions to a single eigenvalue 
wob lem.  This eliminates the off-diagonal multipliers, either by putt ing them 
equal to zero, or by incorpora t ing  them partially into the hamiltonian.  These 
procedures are only strictly possible when the open shell orbitals are the only 
ones of their symmetry.  Except for these part icular  cases, neglect of off-diagonal 
multipliers implies that  the correct  hamil tonian is not  being used, and the energy 
obtained from the approximate  Har t ree -Fock  equat ions is then corrected to 
allow for this [1]. 

A recent paper  [-4] has pointed out  some consequences of this neglect of 
off-diagonal multipliers. The Fock  matrix is no  longer invariant to a unitary 
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transformation of the orbitals, and one is not necessarily at liberty to choose the 
set of orbitals that diagonalises the matrix of lagrangian multipliers. This has 
resulted in calculations that give different total energies when different symmetry 
orbitals are used (even after correcting the energies as above), and discontinuous 
potential curves have been obtained when the symmetry changes with variation 
of normal coordinate [5]. Walker demonstrated [4] that the magnitude of the 
error depended on the number of closed shell orbitals with the same symmetry 
as the open shell, and on their type. Core closed shell orbitals gave rise to larger 
errors than valence orbitals, (in fact the error is roughly proportional to the 
orbital energy) and this was borne out by the results of some Hartree-Fock 
calculations. 

As has already been mentioned, single eigenvalue methods are much more 
convenient to use than those involving two eigenvalue equations, and it is of 
interest to investigate these errors in case they can be avoided in the future. 

2. Theory 

The total hamiltonian for an N-electron system is 

N N 

Z Ti + ~, vii (2.1) 
i = 1  i > j = l  

where T~ represents the terms due to kinetic energy and the attraction by the 
nucleus, and vii the interaction between electrons (1/r 0. The Hartree-Fock 
method approximates this hamiltonian by replacing the two-body interaction 
v/j by a single particle potential V, that is 

H o = ~ (T~+ V~) (2.2) 
i = 1  

with the eigenvalue equation Ho~o=Eo~o,  where ~o is the determinant 
formed from the N lowest solutions of the eigenvalue equation 

(T + V) q~, = ~,q~,. (2.3) 

(Note that this equation is only obtained after choosing the set of orbitals that 
diagonalises the matrix corresponding to e.) The Hartree-Fock potential is then 
defined by 

N 

(a] V[b) = Z {(anlv]bn)  - (anlv[nb)}  (2.4) 
n = l  

with n denoting an occupied spinorbital. 
Hence to first order the energy obtained from a Hartree-Fock calculation is 

= i ~  (~ + ~/). (2.6) 
i = 1  
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This is not so for a single eigenvalue equation, because V' (we shall use primes 
systematically to refer to single eigenvalue calculations) is not defined as in (2.3). 

In this case, the bracketed part of (2.5) is not equal to - ~ -  (i[ Vli),  but 
/=1  

includes other terms. To determine these, we must consider the possible 
hamiltonians. 

In the restricted Hartree-Fock method, orbitals with different spins, or those 
belonging to different degenerate components of the same representat ion- such 
as ~+, re- in linear molecules - are constrained to have the same radial 
dependence. The hamiltonian is therefore the same for all electrons contained in 
the same space orbital. This is quite legitimate if there are only closed shells 
present, but not if there is one or more unpaired electron. Because exchange 
terms only arise between electrons of parallel spin, the hamiltonian for those 
electrons with the same spin as the unpaired electron should be different from 
that for those with opposite spin. 

The restricted Hartree-Fock potential, V', for a single eigenvalue calculation 
is defined so as to be the same for all electrons in spinorbitals of the same 
symmetry. If we consider a diatomic molecule with one unpaired ~r electron in 
orbital x, possible hamiltonians are 

N - 1  

(a~ [ V~lb,) = 2 {(anlvlbn) - (anlvlnb)} + (axlvlbx> - (axlvlxb), (2.7a) 
n = l  

N-1 1 <axlvlxb ) (2.7b) <a~ • {<anlvlbn>-<anlvlnb>} + <axlvlbx>- 5- 
n = l  

and for both of these 

N 

(as] V'lb~) = Z {(anlvlbn) - (anlvlnb)}. (2.8) 
i=1  

The operators V;, V~ can also be written in the familiar Y and K notation as 

N-1 1 ) 
V~ = .~=I ( J , - 5 - K .  + Jx -Kx ,  (2.9a) 

N-1 1 ~ 1 
V; = ,~=1 ( J , -  5- K,] + Jx -  5- K x . (2.9b) 

The energy E' through first order from these hamiltonians is 

1 N 1 
E'~ = 5-,~=1 (e~ +~i) + 5- ~, ( ixlvlxi) ,  (2.10a) 

,= i=~r 

1 ~=1 1 (xxlvlxx > (2.10b) El = 5 - , =  ( ~  + ~') - 5 -  

a n d  it is immediately clear that the extra integrals needed in the energy ex- 
pression involve the open shell electron, either with itself or with the closed shell 
electrons of the same symmetry. 
1" 
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These two different choices of hamiltonian introduce different errors into 
the energy. V~' allows exactly for the interaction of the unpaired electron with 
itself, since ( i x  [v [ix) - ( i x  Iv [xi) = 0 if i = x, but not for the interaction with 
closed shell electrons. The reverse is true for V~, which accounts correctly for the 
closed shells but introduces a spurious contribution for the interaction of the 
open shell electron with itself. Although these errors are partially corrected by 
including the extra molecular integrals in the energy expression, there will still 
be residual terms corresponding to higher orders of perturbation theory. 

Until recently it has always been assumed t h a t  these terms could be 
neglected. Kelly [6] included them in his many-body perturbation theory work 
on the oxygen atom, and showed that they were indeed small. However the large 
errors reported by Walker [4] and Dixon [5], when single eigenvalue methods 
were employed for polyatomic molecules, arise from second and higher orders, 
and this paper  contains some further examples. Both the true Hart ree-Fock 
hamiltonian, H, and the restricted hamiltonians, H' ,  used in the single eigen- 
value approximat ion are derived from one-body potentials. Thus if one was to 
write the Har t ree-Fock wavefunction as a linear combination of determinants 
constructed from orbitals obtained from the restricted hamiltonian, only singly 
excited states contribute. We may then employ perturbation theory with the 
hamiltonian H" = V -  V' to obtain the Har t ree-Fock energy from the restricted 
wavefunctions. 

Two kinds of restriction are involved in these calculations. The first, the 
requirement that the hamiltonian be the same for electrons with different spins, 
is common to both single and double eigenvalue methods. It  corresponds to the 
neglect of spin polarisation. The second restriction is that the hamiltonian be the 
same for electrons in open and closed shells of the same symmetry. It is this 
second restriction that differentiates the single and double eigenvalue methods 
and introduces the molecular integrals into the energy expression. 

3. Perturbation Calculations 

The first order correction due to the perturbation H " - -  V -  V' has already 
been discussed. An idea of its magnitude can be obtained from Table 1, where 
the results of some single eigenvalue calculations are given. The correction is 
much larger for the hamiltonian F~, because the integrals ( x x l v l x x )  are larger 
than the exchange integrals ( i x l v l x i )  involved in the calculation for V;. The 
results for A10, the only case in which both hamiltonians were used for a 

Table 1. First order correction from H" = V -  V' (a.u.) 

Molecule E~ E~ Total Hamiltonian 

Bell: X2S + l~r 2 2a 2 3a - 15.1759042 0.0260388 - 15.1498654 V~ 
CH3: 2A 1 la~ 2a~ 3a 1 lb~ lb~ - 39.1525820 0.0760063 - 39.0765757 V[ 
A10: X2Z + (1 - 6a) 2 (1 - 2n) 4 7a - 316.8417385 0.0909992 - 316.7507392 V; 
A10: X22; + -316.6672300 -0.1694578 -316.8366878 V~ 
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calculation on the same molecule, are particularly noticeable. Although the 
correction is much larger for V; than for VI', the final energy is better, and we 
shall show that this. is due to quicker convergence of the perturbation series. 
However the A10 results give quite a dramatic demonstration of the errors that 
can occur when single eigenvalue methods are used. 

The second order contribution to the energy is 

~ E  z = ~ <~olH"]~,> 
i E o  - Ei 

(3.1) 

where all singly excited states are to be included. If a non-restricted hamiltonian 
is employed these matrix elements are zero. Two different types of excitation can 
be distinguished, those in which the electron excited from an occupied spin- 
orbital (q) to an unoccupied spinorbital (k) has spin parallel or antiparallel to the 
unpaired electron. These can be further subdivided into different symmetries 
of q. Table 2 gives the matrix elements (q~lH"14~o>, where ~ represents the 
determinant formed by replacing an electron in q with one in k, and we have 
assumed one unpaired a electron. 

Table 3 shows the results for the second order energy for three molecules, 
whose wavefunctions were obtained with the hamiltonian I11'. In the cases of Bell 
and A10, only excitations to the first four unoccupied a orbitals and first three 
rc orbitals were considered, and these corrections would no doubt be increased 
if all single excitations were included. In CH3, where only a minimum basis set 
was used, all excitations were included. To check the convergence, two further 
calculations were carried out. In Bell, the matrix of all excited states included 
in the second order calculation was diagonalised and the energy lowering found 
to be 0.003696 a.u., 97 % of which was given by the second order term. In CH3, 
the third order contribution was found to be +0.00014 compared to the second 
order - 0.00659 a.u. 

Table 2. Matrix elements of H" 

Excitation Spin V -  V; V -  V; 

qa--*ka cr 0 - �89 <qxlvlxk> 
qa~krr fl <qx Ivlxk> + �89 <qxlvlxk> 
qrc ~kTc o: - �89 <qxlvlxk > - �89 <qxlvlxk> 
qrc~k~r fl + �89 <qxlvlxk > + �89 <qxlv[xk > 

Table 3. Second order correction from H" (a.u.) 

Molecule A E 2 Hamiltonian 

Bell -0.0036 11; 
CH 3 -0.0065 V[ 
A10 - 0.0058 V~ 
A10 - 0.0044 V~ 
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There is also another means of checking the size of the total error introduced 
by using a single eigenvalue method. Cade and Huo [7] have reported 
calculations for Bell  using the double eigenvalue method, and their energy was 

- 15.15312 a.u. Our results with the same basis set was - 15.14987 a.u., an error 
of 0.00325 a.u., which agrees well with the partial second order contribution of 
Table 3. (This error is not due to the different programmes, since a similar 
calculation on the A21][ state of BeH(]o -2 262]n) when the single eigenvalue 
hamiltonian is identical to that used in the eigenvalue method, gave results which 
agreed to five decimal places.) The difference, 0.00045 a.u. which remains, and 
which would be increased if all excited states were included, is due to the effect 
of using a restricted hamiltonian in the double eigenvalue method, that is of not 
including spin polarisation. 

The error in the CH 3 single eigenvalue calculation was estimated in a 
previous paper [4] as 0.01 a.u. The fact that the second and third order con- 
tributions give slightly less than 70 % of this is partially due to a minimum basis 
set being a bad approximation to the complete set of orbitals. 

The calculations for A10 also allow a comparison of the two restricted 
hamiltonians. The difference between the two values of the total energy is 
0.0859 a.u. (=  2.3 eV), which is large enough to be of importance when calculating 
excitation or ionization energies. The second order contributions only make up 
part of this difference, although they would be larger if all excitations were 
included. However it is possible to draw some general conclusions about the 
relative magnitudes of successive terms in the perturbation series. 

If we write the energy denominator in Eq. (3.1) as AE(q,k,s) for the 
excitation of an electron in orbital q to orbital k with spin s (~ or fl), the second 
order energy becomes, using the matrix elements in Table 2. 

For  V 1' AE~ = 2 I(qxlvlxk)12 (3.2a) 
q,x AEl(q,k, fl) ' 

1 F ](qx[vlxk)l 2 + 1 2  I(qxlv[xk)]2 (3.2b) 
for I1; 

A E 2 = 4 k 7  x AE2(q,k,~ ) 4 qe~ AE2(q,x, fl) 

where we have assumed the unpaired electron has e spin. The summations over k 
include k = x (with spin fl) unless specifically excluded. To compare these two 
second order energies, some assumptions must be made about the relative 
magnitudes of the integrals and energy denominators in the two different 
calculations. 

Since A E2(q, k, fi) = A E2( q, k, oO + (qx  Iv [xq) - ( kx  Iv ]xk), the difference be- 
tween the excitation energies will be small, and we can assume AE2(q,k,e) 
=AE2( q, k, fi) in (3.2b). The expressions for AE 2 can then be written 

I(qxlvlxk>12 I<qxlv[xx>l= (3.3a) 
AE~= 2 AE12(q,k,fl) + E AE~(q,x, fl) ' k, qCx  qCx  

AE~= 1 y~ I(qxlvlxk>l 2 Z ~. [<qxlv[xx>l ~ 
2 k,,*:, AE~(q,k, fl) + 4 qe:, AEZ(q,k, fl) 

1 I<xxlvlxk>l~ (3.3b) 

+ 4 k~, AEz(x,k,~) 
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Table 4. Comparison of molecular integrals for different calculations on A10 (a.u.) 

Integral 
(qxlvlxk)  
q k 

Calc. 1 Calc. 2 

6 8 -0.026809 -0.028206 
5 8 -0.009270 -0.009658 
4 8 -0.002473 -0.002066 
3 8 -0.001855 -0.001784 
2 8 0.001556 0.001458 
1 8 -0.000157 -0.000161 
6 7 0.011644 0.007808 
5 7 -0.011294 -0.011482 
4 7 -0.001809 -0.001421 
3 7 -0.002088 -0.001690 
2 7 0.001106 0.001145 
1 2 0.000581 0.000471 

Calc. i is with V~, Calc. 2 with V; 

Table 5. Comparison of energy denominators for different calculations on A10 (a.u.) 

AE(q, k, fl) Calc. 1 Calc. 2 
q k 

6 8 0.37O4 0.34O9 
5 8 1.1006 1.0669 
4 -8 3.1471 3.1138 
3 8 4.8411 4.8009 
2 8 20.3853 20.3459 
1 8 58.4207 58.4096 
6 7 0.2274 0.1507 
5 7 0.8899 0.8182 
4 7 2.8484 2.7646 
3 7 4.5401 4.3358 
2 7 20.1146 19.9078 
1 7 58.0943 57.8964 

Calc. 1 is with V[; Calc. 2 with V; 

Tab le s  4 a n d  5 give s o m e  r e p r e s e n t a t i v e  va lues  for the  in tegra l s  a n d  ene rgy  

d e n o m i n a t o r s  for  the  t w o  h a m i l t o n i a n s ,  a n d  sugges t  t ha t  in m o s t  cases  they  a re  

the  s a m e  w i t h i n  a b o u t  fif teen pe r cen t  for b o t h  ca lcu la t ions .  H e n c e  we c a n  d e d u c e  
tha t  A E~ > A E22 p r o v i d e d  tha t  

Z E I<q l lxk>[2 
2 q,k,~ AE2(q,k,  fl) 

Z E I<q l l k>l  
+ 4 q ~  AE2(x,k,  fl) > 4 k~x AE2(x ,  k, o 0 

(3.4) 

O n e  w o u l d  expec t  this  i n e q u a l i t y  to  h o l d  excep t  for  l ight  a t o m s  o r  molecu les ,  
w h e n  the  s u m m a t i o n  ove r  all  q wil l  c o n t a i n  ve ry  few te rms .  T a b l e  6 shows  the  

resul ts  for  the  two  c a l c u l a t i o n s  on  A 1 0  in m o r e  detai l .  I t  c o n f i r m s  the  a r g u m e n t s  
above ,  s h o w i n g  tha t  A E12 > A E~, a n d  tha t  a b o u t  ha l f  o f  A E 2 ar ises  f r o m  the  t e r m  
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Table 6. Contributions to A E~ and A E22 for A10 (a.u.) 

aE~ A~ 

Excitation 7a ~ ka 0 - 0.002041 
Total from other a excitation -0.005709 -0.002263 
Total from n excitation - 0.000109 - 0.000101 
Grand total - 0.005818 - 0.004405 

1 E I<xxl lxk>12 
4 k , x  A E ( x ,  k, c~) . It is this term in light molecules that could invalidate the 

inequality (3.4). The assumptions about relative sizes of molecular integrals and 
energy denominators in the two calculations appear to be partially justified by 
the close agreement between the contributions from H excitations. 

However the difference between the limited second order contributions does 
not explain the discrepancy between the energies obtained for the two calcu- 
lations, and higher order terms should be considered. While an actual calculation 

would be very tedious, there are two factors which suggest that ~, A E] > ~ A E~. 
n = 3  n = 3  

Firstly, the matrix elements involved in the calculation of A E~ are a factor two 
smaller than the nonzero elements for A E~. Secondly, although there are twice 
as many terms, because excitations of both spins contribute, they occur with 
opposite sign. There will therefore be some degree of cancellation in the higher 
orders of perturbation theory. 

4. Conclusions 

These results demonstrate the large errors that can occur when single 
eigenvalue methods are used, that is the hamiltonian is chosen to be the same 
for electrons in open and closed shells of the same symmetry. Moreover, these 
errors are the larger the more closed shells there are of the same symmetry as the 
open shell [4]. The same conclusions can be drawn from the behaviour of the 
Fock matrix under a unitary transformation of the orbitals, but the consideration 
of the second and higher order corrections may allow the errors to be minimised. 

This work suggests that of the two hamiltonians considered here, V~, which 
accounts correctly for the open shell/closed shell interactions, gives a better 
energy than V;. Although the two hamiltonians dealt with in this paper are the 
intuitively obvious ones, there are many others which could be used. It would 
be possible to employ as the Hartree-Fock potential V~ defined by 

N - - 1  

<a~lV;lG)= Z {<anlvlbn)-<anlvlnb)}+<axlvlbx)-'~<axlv]xb) 
n = l  

where 2 is a variational parameter, chosen to minimise the total energy as given 
by E;  + E't. Presumably this choice of 2 would also minimise the magnitude of 
the second order correction to the energy. 

The factors dealt with here are another aspect of the symmetry problems 
first raised by L6wdin [8]. He investigate~ the relationships between the 
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symmetry orbitals used and the total energy for closed shell molecules, and 
showed that it was sometimes possible to obtain a lower energy by employing a 
lower symmetry. Cizek and Paldus [9, 10] and Hibbert  and Coulson [11] have 
investigated the stability of the Hartree-Fock equations for both open and 
closed shell systems, and the former showed that for cyclic polyenes in the PPP  
approximation,  the equations were always unstable to changes in symmetry. 
They were able to differentiate two types of instability for molecules with one 
unpaired electron, doublet and multiplet instability. The latter corresponds to 
spin polarisation and is always present, that is to say a lower energy will always 
be obtained if the restriction that electrons in the same orbitals have the same 
spatial dependence is lifted. Their doublet instability is formally related to the 
errors introduced by the single eigenvalue methods. 

There is an interesting distinction between their work and this paper. They 
showed that the energy could be lowered by lowering the symmetry, but the 
reverse can be true for the errors discussed here. This follows because the open 
shell orbital may be the only one of its symmetry type in a high symmetry, but 
not in a lower one. For  example, the 2E' state in CH 3 has the configuration 
(la'l) / (2a'1) 2 (le') 3 (la~) 2, but in C2v one component  becomes 2A 1 with con- 
figuration (la~) 2 (2a~) 2 (lb2) / 3al(lb1) 2. The off-diagonal multipliers connecting 
closed and open shells will be zero in D3h but not in C2v; thus in D3h the single 
eigenvalue hamiltonian is exactly the same as the one in the double eigenvalue 
method. 

In this paper we have only considered the energy, but other molecular 
properties may also be affected. Again singly excited states will contribute to 
the expectation value unless the correct Har t ree-Fock hamiltonian is used. It is 
only likely that this will be important  if the property is very dependent on the 
unpaired electron, or if contributions from spin polarisation are important.  

Acknowledgements. The author would like to thank the Royal Commissioners for the Exhibition 
of 1851 and University College, Oxford for research fellowships. 

References 

1. Roothaan, C.J.: Rev. mod. Physics 32, 179 (1960). 
2. Hunt, W.J., Dunning, T.H., Goddard, W.A.: Chem. Physics Letters 4, 231 (1969). 
3. Nesbet, R.K.: Proc. Roy. Soc. (London) A 230, 312, 322 (1955). 
4. Walker, T.E.H.: Chem. Physics Letters 9, 174 (1971), 
5. Dixon, R.N.: Molecular Physics 20, 113 (1971). 
6. KeUy, H.P.: Physic. Rev. 144, 39 (1966). 
7. Cade, P.E., Huo, W.M.: J. chem. Physics 47, 614 (1967). 
8. L6wdin, P.-O.: Rev. mod. Physics 35, 496 (1963). 
9. Cizek, J., Paldus, J.: J. chem. Physics 47, 3976 (1967). 

10. Paldus, J., Cizek, J.: J. chem. Physics 52, 2919 (1970). 
11. Hibbert, A., Coulson, C.A.: J. Phys. B. 2, 458 (1969). 

T. E. H. Walker 
Department of Physics 
University of Virginia 
McCormick Road 
Charlottesville, Virginia 22901 
USA 


